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Pyrolysis Kinetics o f  a Western High Volat i le  Coal 

by Norbert Kertamus and George Richard Hill 
Fuels Engineering Department, University of Utah 

Although a number of time s tudies  have been made on coal devolat i l -  
izat ion,  three pr incipal  models have been developed t o  explain the  weight 
l o s s  curves (1). 

T h i s  study i s  an attempt t o  evaluate t h e  mechanism of pyrolysis of 
a Western U. S. high v o l a t i l e  coal. The weight loss-time curves a re  
interpreted according t o  the  three c lass ica l  models and a s  a simple 
unimolecular reaction. A new mechanism, more i n  accord with a l l  the  
data,  i s  proposed. 

Several t y p i c a l  pyrolysis curves a r e  plot ted i n  Figure 1. I n  each 
instance the weighed coal sample was placed on a quartz spring, thermo- 
gravimetric furnace and the  weight l o s s  determined as  a function of 
time. 
I n  the  equations t h a t  follow, the  f o l l o d n g  def in i t ions  apply. 
in i t ia l  sample weight on an ash f ree  basis .  
( a t  i n f i n i t e  time). 2 = x/a. 
of activation. 
intermediate s imilar  t o  van Krevelen's metaplast. 
concentration of t h e  i t h  species i n  P i t t ' s  pyrolysis mechanism. 

I n  the f igure the ordinate i s  t h e  f r a c t i o n a l  weight l o s s  AW/Wo. 
Wo = 

x = [W/W>. 
A& = heat of activation. A St = entropy 

a = [W/Wo3max. 

E = act ivat ion energy (Arrhenius). R. i s  a react ive 
B i  i s  t h e  i n i t i a l  

The general d i f f e r e n t i a l  equation defining an n th order reaction 
i s  dx/dt = k (a-x)" when k i s  the reaction r a t e  constant; 
of log  (dx/dt) v s  log  (a-x), the  slope of t h e  l i n e  gives t h e  value of n. 
In  Figure 2, it i s  noted t h a t  the apparent order of the react ion var ies  
from an i n i t i a l  4.5 t o  unity. 
simple unimolecular mechanism. 

In  a graph 

Obviously the  decomposition i s  not by a 

Earl ier  wr i te rs  on coal pyrolysis k ine t ics  (2-9) have assumed the 
basic  reaction t o  be a t  l e a s t  one unimolecular decomposition followed 
by other slower s teps  which become r a t e  determining. I n t u i t i v e l y  (10) 
bond breaking reactions of organic molecules would be unimolecular and 
the reaction r a t e  proportional t o  the  remaining undecomposed v o l a t i l e  
producing material  (a-x). 
order" kinet ics  e ~ s t s  t h e  log (l-x/a) can be p lo t ted  versus time a s  
i n  Figure 4. All of the  curves are l i n e a r  f o r  the  first 10-15 minutes 
and f o r  times i n  excess of 200 minutes. If it i s  assumed t h a t  one or 
the  other l i n e a r  portion of the curve represents t r u e  first order ra te  
dependence the  slope of t h e  l i n e  k i  ( i n i t i a l )  or kf ( f i n a l )  would be 
the r a t e  constant. 

To determine whether a region of "first 

The va l id i ty  of the  assumption can be checked by determining the  
magnitude o f  the  heat and entropy of act ivat ion from Arrhenius o r  Ey-ring 
Absolute Reaction Rate p l o t s  of the log  of t h e  r a t e  versus 1/T. 
i s  an Arrhenius p lo t  of kf ( f i t  by l e a s t  squares). 
i s  2.4 kcal/mole. 
value of 80 kcal f o r  C-C bond decomposition. 
which should be almost zero, i s  -50 e.u. 

Figure 5 
The ac t iva t ion  energy 

T h i s  value i s  considerably l e s s  than P i t z e r ' s  (11) 
The entropy of act ivat ion 
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Arbitrar i ly  selected times of 150 and 500 minutes were chosen t o  
determine r a t e  constants i n  Figure 6. 
extrapolation t o  i n f i n i t e  time were l e s s  than the  experimental values 
i n  a l l  cases. 

The values of (la" determined by 

Arrhenius p l o t s  of the  r a t e  constants (Fig. 7) and w i n g  plots ,  
f i t  by the method of l e a s t  squares give E = 10.6 kcal/mole and A€$ = 
9 kcal/mole respect ively.  

To a l a r g e  extent  the v o l a t i l e  matter i s  released from t h e  coal , 
during the first 1 0  t o  30 minutes. The i n i t i a l  ra te  constants should be I 

t h e  most s ign i f icant .  
act ivat ion energy o f  26.6 kcal/mole. The b H i  i s  24.8 kcalTmole and t h e  
entropy of  ac t iva t ion  i s  -10.1 e.u. 

The l e a s t  square Arrhenius p lo t  (Fi  . 8)  gives 

It has been suggested by Reed (12) t h a t  t h e  intercept  a t  i n f i n i t e  
temperature of an ac t iva t ion  energy p lo t  may be a more r e l i a b l e  t e s t  of 
a unimolecular mechanism than the act ivat ion energy. Daniels (13) 
s t a t e s  t h a t  f o r  most unimolecular bond breaking reactions t h e  entiopy * 

of activation i n  an Eyring p l o t  i s  almost zero since the'activated 
complex i s  so much l i k e  t h e  or iginal  reactants.  
frequency f a c t o r  from an Arrhenius p lo t  should be*1013. 
of coal decomposition, i n i t i a l ,  intermediate, o r  f i n a l  it i s  seen t h a t  
energy considerations ru le  out simple unimolecular decomposition a s  
being rate  determining. 

This means t h a t  the 
I n  each region 

Since a simple unimolecular k ine t ic  model does not explain the  
weight l o s s  curve, or even p a r t s  of it rigorously,  three extensions 
have been advanced. The f i rs t  of these might be roughly defined a s  
t h e  unimolecular approach. 
curve can be defined by a number of independent unimolecular decomposi- 
t ions .  Various w r i t e r s  (2-5) have considered from one t o  f ive ,  although 
P i t t  (6) derives the  general  case where a great many decompositions take 
p a r t  i n  the weight l o s s  curve. 

This assumes t h a t  t h e  weight loss-time 

The second model was proposed by N. Berkowitz (7) .  I n  his repre- 
sentation, he assumes a s  coal i s  placed i n  a hot environment, t h a t  a 
rapid pyrolytic react ion occurs. T h i s  react ion produces a la rge  volume 
of vo la t i le  mater ia l  t h a t  i s  s tuffed i n t o  t h e  inter-porous space of the  
coal par t ic le .  
t h e  inter-porous volume a s  giving r i s e  t o  t h e  kinet ics .  
t h e  i n i t i a l  decomposition a s  unimolecular and estimates appropriate 
r a t e  constants t o  f i t  the  slow diffusion controlled process. 

H e  postulates  a slow diffusion of vo la t i le  matter f r o m  
He considers 

The t h i r d  approach i s  t h a t  defined by van Krevelen and co-workers 

/' 
(8, 9).  
pyrolyt ic  weight loss curves, but other coal pyrolytic phenomenon. 
approach assumes t h a t  the  decomposition of a bituminous coal can be 
distinguished i n t o  t h r e e  successive reactions;  
intermediate phase (metaplast)  which i s  (par t ly)  responsible f o r  t h e  
p las t i f ica t ion  and transformation of this intermediate i n t o  semi-coke 
and f i n a l l y  i n t o  coke with three  individual r a t e  constants. 

They pos tu la te  a mathematical scheme t o  define not only the  
This 

formation of an unstable 

1 

P 
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I n  addition t o  the  assumption o f  one unimolecular decomposition 
the following assumptions are  made i n  the  three  models. 
Berkowitz; 
i n  the  pore s t ructures ,  (2)  a diffusional ly  controlled r a t e  l o s s  which 
can not be t rea ted  rigorously, and (3) an assumed time of completion 

Case 11, P i t t ;  
(1) a value f o r  the  frequency fac tor  "a1', (2 )  the i n i t i a l  concentration 
of a l l  vo la t i le  species i s  the same, (3 )  a l a r g e  number of independent 
unimolecular decompositions of d i f fe ren t  ac t iva t ion  energies. Case 111, 
van Krevelen; 
(metaplast) which decomposes t o  give gas, (2)  equal i ty  of r a t e  constants 
for  formation and decomposition of metaplast and ( 3 )  the occurrence of 
a second (semi-coke) decomposition which produces addi t ional  gas. 

Case I, 
(1) an undefinable equation of s t a t e  of the  product gases 

P of p y r o l p i s  which determines the  act ivat ion energy. 

(1) an i n i t i a l  depolymerization t o  unstable intermediate 

I Berkowitz found t h a t  s ignif icant  differences existed between the  
weight loss-time curves f o r  a -10 t o  +28 mesh coal and a -60 mesh coal. 
I n  our laboratory representative samples of -40 Bo 6 0  and -200 t o  +250 
mesh coals were pyrolyzed. The weight l o s s  time curves were ident ica l .  
It i s  possible t h a t  heat d i s t r ibu t ion  and thermal conductivity may be 

7 

I 
important with la rger  p a r t i c l e  sizes.  

I n  P i t t ' s  model (Case 11) it i s  assumed t h a t  the  independently 
decomposing coal molecules have a d is t r ibu t ion  of act ivat ion energies 
f o r  decomposition between E and E M .  
molecules remaining a f t e r  some time t i s  given by the  equation: 

The number of undecomposed 

AT 
nt = n f ( E ) e  dE 

0 

Mathematically assuming an energy d is t r ibu t ion  from zero t o  i n f i n i t y  
and plot t ing a range of act ivat ion energies, the  da ta  give a broad 
maem i n  the d is t r ibu t ion  curve i n  the  energy range 50 t o  55 kcal/mole. 

An al ternate  treatment using P i t t ' s  model gives the equation: 
J J 

r? - k i T  
x = Ei - z i e -  

i = 1  i =.1 

Using P i t t ' s  assumptions of equal i n i t i a l  where j decompositions occur. 
concentration of v o l a t i l e  matter a curve analogous t o  Figure 4 can be 
constructed. 
51.6 kcal/mole i s  obtained. 
mole. 
kcal/mole. 
equal i n i t i a l  concentration of a l l  the  v o l a t i l e  species. 

From k l  f o r  our run 1 7 / R  (682OK), an act ivat ion energy of 
From kf t h e  ac t iva t ion  energy i s  55.2 kcal l  

For run 24/R (77OoK),  the  respective values a r e  55.2 and 61.4 
The one disadvantage of P i t t ' s  model i s  the assumption of  

If t h e  species 
pyrolyzed were l a r g e  a more tenable assumption i s  equal 
act ivat ion energies).  I f  so,  the  above equation reduces 
order kinet ics  and the  i n i t i a l  concentration of B i  i s  unimportant. 

I n  van Krevelen's model (Case 111) , t h e  assumption t h a t  the  r a t e  
are equal and t h a t  one ha l f  of the  gas evolved i s  

The problem can be solved by modifying 

constants k l  and k 
from each of two sfeps does not result i n  a good fit of the  experimental 
curve, according t o  P i t t  (6).  
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s l i g h t l y  t h e  van Krevelen model t o  permit an estimation of t h e  gas 
produced i n  each s tep.  Mathematically the  f i n a l  expression i s  the  
same a s  the  in tegra ted  form f o r  a consecutive reaction except t h a t  
t h e  fract ion of gas produced i s  defined by a r a t i o  of r a t e  constants. 
The modified model cons is t s  of t h e  following steps:  

Coal kd + R. R. .-*Gas and R. ____ 
and M 
van Krevelen's metaplast and M i s  equivalent t o  semi-coke; 
s t a t e  i s  assumed f o r  R - .  
can be determined from Figure 4. From t h e  points of an Arrhenius p lo t ,  
t h e  var ia t ion i n  kd with temperature gives t h e  l e a s t  square equation of 
log, (kd) = -11.1/T 
kcalfmole and a frequency fac tor  of 3.3 x lo5. 
corresponds roughly t o  k3 of the van Krevelen model or kf discusse8 
previously. 
i s  very small (-2.4 kcal/mole). 
second step. 

k kl > M  M-S-Gas k 

k7 ?.Coke, where Re i s  a react ive intermediate similar t o  
a steady 

By making cer ta in  simple approximations 

+ 12.7 which gives an act ivat ion energy of 22.1 
If ko "k2, then k 

Pyrolysis could not account f o r  the  

+- k2 

T h i s  means t h a t  the act ivat ion energy f o r  the second s tep 
< 

A new model which f i ts  the  experimental da ta  involves t h e  following 

the decomposition exhibi ts  first order dependence upon the number 
two assumptions. 
law; 
of surface si tes (S:) avai lable  a t  any time. 

The decomposition follows a simple f i r s t  order r a t e  

T h i s  model i s  based upon the e a r l i e r  worker's observations and data 
I n  the pyrolyses conducted c i t e d  and upon addi t ional  experimental data .  

i n  this laboratory,  t h e  calculated residence time of v o l a t i l e  products 
i s  9.3 seconds. Analyses of the nitrogen c a r r i e r  gas  stream u t i l i z i n g  
an F and M model 720 Chromatograph and a Consolidated Electrodynamics 
Model 21-620 Mass Spectrometer showed no detectable low molecular weight 
hydrocarbons. The product gases 
were frozen out i n  a l i q u i d  nitrogen cooled t r a p  and analyzed. 
hydrocarbon and carbon dioxide concentration was determined t o  be 1.8% 
with C&, C2H6, C H8, c4-C~ and higher hydrocarbons being present i n  the 
r a t i o  80:60:62:123. The gas analysis ind ica tes  tha t  i n  addition t o  the 
CO2 and H 2 0  produced, t h e  pr inciple  primary decomposition products were 
of high molecular weight. 
reactions. These a n a l y t i c a l  data strongly suggest t h a t  l a rge  molecules 
i n  the coal a r e  fragmented t o  produce the  primary products, probably i n  
a single bond breaking, unimolecular reaction. 

s i tes ;  the pyrolysis  react ion would be wri t ten S: + (1-2) k , Z  + S: . 
The d i f f e r e n t i a l  equation defining the  r a t e  is: dZ/dT = ko (1-Z)(S:). 
The second postulate  requires  t h a t  d(S:)/dZ = -h(S:) which on integrat ion 

gives (S:) = e-bz. . From 

w r i n g ' s  r a t e  theory (14) t h e  r a t e  constant ko' = %-4F*/RT where k i s  

Boltzmann's constant and h i s  Planck's constant. 
act ivat ion var ies  i n  a l i n e a r  manner with the amount pyrolyzed, AFf = 

If g i s  a function of the  entropy of activation only, i . e .  
of the r e l a t i v e  c o m p l e ~ t y  of the act ivated complex t o  the undecomposed 

The usua l  d i s t i l l a t e  was a t a r  mist. 
The t o t a l  

The l i g h t  gases found may be due t o  secondary 

The second postulate  involves a f i rs t  order dependence upon surface 

-bZ Subst i tut ing one obtains dZ/dT = ko(l-Z)e 
/ 

%f the f r e e  energy of 

AFof + qZ. - 
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reactant,  t h e  temperature dependence of entropy cancels when this  
equation i s  subst i tuted i n t o  w i n g ' s  equation. 
i n t o  a unimolecular r a t e  equation, the equation dZ/dT = k, (l-Z)e-bz 

r e s u l t s  where b i s  an entropy dependent term o r  dZ/dT = ikT/h)e 

dZ/dT versus Z should give a s t r a i g h t  l i n e  of slope b12.3. T( 1 -Z)  A p l o t  of log  

If the  model i s  correct  t h e  slope should not be temperature dependent. 
I n  Figure 9 the appropriate p l o t s  a re  represented from 0 t o  75% completion. 
A s  can be seen, excellent point l i n e a r i t y  and slope agreement at di f fe ren t  
temperatures, a re  found, especial ly  €or t h e  lower temperature curves. 

If this i s  subs t i tu ted  

-u*lRT(l-z)e -bZ . 

A t  the lower temperatures l i n e a r i t y  i s  observed f o r  90% of t h e  
pyrolysis. 
a t  75% completion. 
a t  higher temperature (6 )  or an increase i n  secondary reactions.  

A t  higher temperatures a departure f r o m  l i n e a r i t y  occurs 
This might ind ica te  a break down o f  t h e  coal surface 

From t h e  in te rcepts  of Figure 9, Figure 10  was constructed. The 
heat of  act ivat ion was found t o  be 55.8 kcallmole. 
This corresponds t o  a very syl1 posi t ive entropy of act ivat ion or  t o  a 
frequency fac tor  of about lo1 , a value t o  be expected from theore t ica l  
considerations. 
bond breaking reactions.  

Van Krevelen's observation i s  most germain: 

The in te rcept  i s  13.51. 

The act ivat ion energy i s  of  the  r i g h t  magnitude f o r  

"Any k ine t ic  interpre-  
t a t i o n  i s  much too  simple t o  provide a complete descr ipt ion of t h e  
complicated decomposition process; 
regard it a s  a mathematical model which does not pretend t o  be more than 
an aid f o r  obtaining a semi-quantitative descr ipt ion of the  experimental 
resu l t s .  

therefore ,  it i s  more cor rec t  t o  

Appreciation i s  expressed t o  the  Office of Coal Research which, with 
t h e  S ta te  of Utah co-sponsors this research. 
t h e  advice and counsel given by D r .  R. I. Reed and D r .  Larry L. Anderson 
i n  the  in te rpre ta t ion  of the data .  

We a r e  gra te fu l  a l s o  f o r  

.. . 
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